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Abstract 

This paper examines possible explanations for correlations that exist between 
graph-theoretical topological indices and observed physical properties of  molecules. 
The general line of approach is to demonstrate that a particular graph-theoretical 
correlation has an analytical correspondence to an observed additive structural 
description. The basic approach is exemplified by showing that the correlation 
of  partial molar volumes of  normal alkanes with x (chi) topological indices corre- 
sponds quantitatively to a previously obtained molecular structure relationship 
involving group additivity and average gauche conformation numbers. A recurrence 
relation is tested for the gauche numbers  and the results confh'm a previously 
proposed linear dependence on molecular size. 

1. Introduction 

Tile connectivities or topologies of physical structures can be represented by 
graphs [1,2]. The pictorial representation of a graph G can be described in terms of 
a set V of vertices (points, nodes) and a set E of edges (lines, arcs) which join pairs 
of vertices. A chemical molecular graph is a graph in which the vertices identify 
nuclear positions of atoms, and edges represent chemical bonds [3,4]. For many 
graph-theoretical treatments of organic chemical problems, the molecular graphs 
(usually undirected) are drawn after deleting all of the hydrogen atom vertices and 
the edges connecting those vertices to the remainder of the graph (H-suppressed 
graphs). The vertices and/or the edges of the molecular graph may be labeled 
(weighted) when heteroatoms or different types of bonds are present in the structure. 

Molecular graphs are possible starting points t~r quantitative descriptions of 
molecular structures. One approach is to use indices derived from the graph structure, 
commonly referred to as topological indices [ 5 - 7 ] ,  that essentially express the 
overall connectedness of a molecular graph as a numerical term. These quantities 
can then be tested and used as numerical descriptors of physical and chemical 
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properties [ 6 - 1 0 ] .  Surprisingly good correlations have been reported [8 -10]  for a 
wide range of physical observables like molar volumes, refractive indices, enthalpies 
of formation, etc., and for a great variety of organic compounds. In general, reasons 
for these congruencies are only vaguely understood in terms of the common dependence 
of indices and properties on molecular structure. 

This paper follows the methodology and suggestions by Edward [11-14]  to 
search for molecular explanations of correlations between topological indices and 
observed properties of molecules. The salient aspect of the approach arises from 
the inference that previous molecular structure group additivity methods [15,16] 
provide the most useful simple structural models for s tructure-property 1elation- 
ships. One attempts, therefore, to discover how a topological index relates (analytically) 
to a relevant additivity Inodel for the property under investigation. In general, we 
believe that this kind of understanding of topological indices will allow (i)the valida- 
tion of known results, and (ii) the systematic investigation and improvement of 
correlations. The specific aim of the present work is to show how a particular corre- 
lation of the molar volumes of ~A-alkanes with topological indices (Randid-type 
branching indices [17], see later) corresponds to a previous additixdty relation. 
Edward [11,13] has considered this same problem from a generalized and more 
qualitative viewpoint that includes branched alkanes in the analysis. 

2. Definitions and background 

The graph G can be described by the set of vertices Vand the set of edges E. 
The set E is a subset of the product Vx V 

Vx g = {(ui,t)y)lui,u ] E  V}. (1) 

If E is a subset of the set of symmetric pairs in Vx V, then G is an undirected graph. 
If (vi,v]) E E, we say that the vertices i and j are connected. An m-path in a graph 
(molecular graph) is a sequence of m adjacent edges (bonds) with no vertex (atom) 
appearing more than once. 

The adjacency matrix [A ] is a useful representation of the graph. The elements 
of this matrix, also called the connectivity matrix, are defined by 

1 when (vi,v]) E E 

aii 0 otherwise. (2) 

Many topological indices can be directly obtained [18] from the adjacency matrix 
or from the m-path matrix [(A re)t/] , where the matrix elements are 
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1 if and only if u/is the mth neighbor of v/ 
: (3) 

(am)q 0 otherwise. 

Some of the most widely used topological indices in structure-activity analysis 
are those which are based on Randid's branching index [17]. For the H-suppressed 
molecular graphs of  the saturated alkanes, this index X (chi) is defined as 

X = ~, (did]) -°'s. (4) 

where d i is the number of edges incident at v i (called the degree of vertex ui). The 
sum is over all edges (u i ,vj) E E. Randid originally proposed tNs index to rank order 
alkanes, according to a perceived extent of branching. Larger values of d i reflect 
greater substitution on C atoms, and the inverse square root was chosen as one algo- 
rithm preserving inequalities between isomeric alkanes. X can be expressed in the 
alternate formulation 

X = Z [{/12)ii (A2)jj] -0.5 (s} 

since {A2)ii, the diagonal elements of the matr ix  [/1] 2 , gives the degrees of the 
vertices i. Other, more branched alkanes have smaller X values. 

Kier and Hall [8,10] extended the concept of the X index to incorporate other 
structural fragmentations of molecular frameworks. Accordingly, the following second- 
and third-order indices for two-and three-bond fragments are defined: 

2X = Z ( d i d / 4 )  -O's (6) 

3 X = ~..(didjd k dr) -°'s, (7} 

where the summations for 2 X and 3 X are over 2-paths and 3-paths, respectively. 
Randid's original algorithm, which included only one-bond dissections, is 1X on this 
basis. In addition, cluster (c) and path/cluster (pc) indices were defined for other 
commonly occurring molecular fragments, as illustrated in 1 - 3 .  

A 
I (3x c) 2 (4x c) 3 (4Xpc) 
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3. Molar volume of  n-alkanes 

Edward and coworkers [19] obtained partial molar volume experimental 
data in CC14 solution for alkanes (branched as well as normal), and found that the 
partial molar volumes could be calculated with good accuracy using the group additivity 
scheme given in eq. (8): 

v °  = E + ~ n~l~ - 2.5(z~). (8) 
i 

V c is a constant (11.61 ml tool -~ ) called the covolume, the l i are volume increments 
for various types of carbon atoms, i.e. I(CH 3) = 26.85 and I(CH 2) = 17.36, and the 
n i are the numbers of such groups in the molecule. Z n is the average number of 
gauche conformations for the alkanes given by the equation 

Z n = ,/gg, (9) 

where g is the number of gauche interactions in any confornaation, and 7g is the mole 
fraction of that conformation, obtained using the Pitzer steric partition function [20]. 
The summation is over all possible conformations. Our discussion is limited to the 
n-alkanes, and in this case the values of Z n were obtained prexdously from the 
empirical equation 

Z,, = 0.380 + 0.293(n - 4), (10) 

which is accurately linear in the munber n of carbon atoms for the series of normal 
alkanes, pentane to nonane [19]. Since this equation was extrapolated to deal with 
molecules with as many as 32 carbon atoms, we have investigated more general algo- 
rithms (see appendix) to calculate the Z n for g-alkanes and have verified the results 
of Edward and coworkers [19]. 

A graph-theoretical approach to correlate the same experimental data was 
developed by Hall and Kier [21]. They found an excellent correlation of the molar 
volumes with the first-order path, second-order path, and fourth-order cluster terms 
of the X branching topological indices, described by eq. (11 ): 

V ° = 24.87(1X) + 11.86(2X) - 2.844(4Xpc) + 39.79. (11) 

A relationship involving the liquid alkane densities required two additional topological 
parameters for equivalent accuracy [22]. 
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4.  R e s u l t s  a n d  d i s c u s s i o n  

Equation (8) is so far the best additive scheme available to calculate molar 
volume of  alkanes. One important consideration is that it takes account of  Z n, which 
was a factor neglected in previous formulations, and it gives a rational molecular 
level picture of the molar volume. External factors such as temperature that might 
influence the molar volume are explicitly built into eq. (8) through the Z n term. 
In eq. (11), on the other hand, the variables explicitly include only topological factors, 
which are present as sums of  inverse square root nmltiplicative terms. Other factors 
can be only indirectly included in the coefficients of the equation. One infers that the 
average conformation factor is expressed in the Hall and Kier equation, but the actual 
condition for inclusion is not obvious. Below we show, for the case of  the normal 
alkanes, that both eq. (8) and eq. (11) reduce to the same simple linear equation in n, 
thus clarifying the correspondence of  the two approaches. 

For {l-alkanes, the only types of carbon atoms present are methyl (l~) and 
methylene (l 2 ). Then,incorporating the linear dependence of Z n on n given in eq. (10), 
and using the values for the various parameters obtained by Edward and co- 
workers [19],  the Edward eq. (8) reduces to 

V ° = I/c + 2/1 + (n - 2)/z - 2.5(0.380 + 0.29307 - 4)) 

= c I (n) + c2 

= 16 .6300  + 32.57. (12) 

Now consider the Hall/Kier eq. (11) for r!-alkanes with n carbon atoms. A 
linear chain graph with n vertices contains (n - 1) 1-paths and (n - 2) 2-paths. The 
1X and the 2 X values for an n vertex chain graph are 

1X = 2 ( 1 . 2 )  -° ' s  + (n - 3) (2._9) -° 's  

= 0.5(,7) - 0.086 (13) 

2 X = 2 ( 1 . 2 . 2 )  -° 's  + ( n - 4 1 ) ( 2 . 2 . 2 )  -° 's  

= 0.35(n) - 0.414 (14) 

4Xp c is zero for a chain graph, since there are no path clusters, Equation (11) therefore 
reduces to 
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V ° = 24.87(0.5n - 0.086) + 11.86(0.35n - 0.414) + 39.79 

= c3( ,  0 + q 

= 16.59(n) + 32.74. (15) 

We see that eq. (12) and eq. (15) are identical in form, with almost identical 
parameters. Tile small discrepancies in the parameters may result from the fact that 
Edward and coworkers did not allow complete flexibility in the determination of the 
volume increment independent variables during regression analysis. In fact, a regression 
treatment of eq. (8) and eq. (11) restricted to the pT-alkanes gives slightly different 
parameters than those reported earlier, and leads to identical values of the final co- 
efficients in eq. (12) and eq. (15 ). Either result establishes an explicit correspondence 
between the molecular structure additi~dty rules and the topological index approach 
for this observed physical property, namely, the molar volume of n-alkanes. It should 
be lnentioned that Edward's previous work [11,13] anticipated this type of result. 
We believe that the expositions of these equivalences are useful, since they substantiate 
the rather abstract approach of the connectivity index by the more physically tangible 
additivity model. 

There is scope for improvement in the procedure we have suggested above. 
The linear dependence of Z n on ll has not been analytically proved. However, since 
there is a recurrence relation for the conformation distribution function d ( m , g )  

(see appendix), an explicit summation might lead to the desired proof. The extension 
of the analysis to the branched chain alkanes is also under investigation. The com- 
binatorial problem is much more difficult, and the rational demonstration of a parallel 
between the toplogical approach and the additivity model is evidently correspondingly 
complex. Establishing such equivalences will lend useful support for the topological 
method which utilizes fewer parameters compared to the traditional models (cf. 
eqs. (8) and (11) without sacrificing accuracy. Finally, we note that an additivity 
relation similar to eq. (8) and a X index equation similar to eq. (11)exist for the heat 
of  vaporization of alkanes [ 8 , 1 0 - 1 4 ] .  The similitudes of these expressions can be 
worked out exactly, as in the case of molar volume that we have discussed. There are 
also other thermodynamic properties of molecules that may prove to be amenable to 
such studies, since it has been demonstrated that several of these properties depend 
upon path numbers and other types of similar simple topological indices to a first 
al~proximation [11 "~3 ~a] 
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A p p e n d i x  

Edward and coworkers [19] empirically demonstrated that the average gauche 
conformation number Z n for !l..alkanes (pentane to nonane) is linearly dependent 
on n, the number of carbon atoms, and they calculated Z n for higher alkanes from 
the linear relationship because the number of configurations was deelned too large 
to handle. Recurrence relations developed by Wurflinger [25] and Wille [26] allow a 
calculation of the Z n term for any size linear alkane. The treatment by Wurflinger is 
recast below. 

Consider the n-alkane chain of n carbon atoms. The H-suppressed graph will 
be a chain graph on n vertices with (n - 1) edges. 

2 4 

1 3 5 

n-2 n 

Graph of the n-alkane with n C atoms. 

Different conformations of the alkane are obtained by distributing anti, gauche (+)  
and gauche ( - )  conformations oil (n - 3) of the bonds. The terminal C-C bonds have 
equal energy conformations for all rotational positions of the methyl groups. We will 
assign a constant value of energy (a = 700 cal/mol [20]) to the gauche forms with 
respect to the lowest energy anti conformation. Those configurations where consecutive 
bonds occur in gauche (+)  and gauche ( - )  conformations will be neglected, since they 
invoke very high energies due to second-neighbor interactions and lead to negligible 
contributions to the partition function. 

Now tile problem of distributing the three types of conformations in (n - 3) 
consecutive bonds with the restriction mentioned is the same as the combinatorial 
problem of putting yellow (anti), red (+),  and blue ( - )  objects in (n - 3) consecutive 
boxes (one in each box) in such a way that red and blue objects never reside in adjacent 
boxes. One can easily verify [25] that the number of  distributions of g objects (red 
and/or blue) in m boxes (m = n - 3, g ~< m) with the above restriction is given by 

eq. (16): 

d(m,g) = d ( m -  1,g) + d ( m -  1 , g -  1) + d(m - 2 , g -  1). (16) 

Using this recurrence relation and values d ( m , 0 )  = 1, d(m, m) = 2, and 
d(2,  1) = 4, any d(m,g) can be calculated. A computer calculation is, of course, 
very helpful for large values of m (see ref. [20(b)],  p. 45, for a table of values for 
d(m, g)). The energy of conformations having g gauche bonds is given by (ga), and the 
mole fraction [20] of such conformations at temperature T will, therefore, be given by 
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m 

-rg = d ( m , g ) { e x p ( - g a / k T ) }  / 
g = O  

d ( m , g ) l e x p ( - g a / k T ) }  . ( 1 7  ) 

Zn,  the average number of  gauche forms in an n carbon atom linear alkane at tempera- 

ture T, is obtained by summing over values of  g from 0 to n - 3 ( = m): 

m 

Z,, : 

g = O  

g d ( m , g ) l e x p ( - g a / k T ) }  / ~ dOn, g ) { e x p ( - g a / k T ) }  . 
g = O  

(18) 

Values of  Z n obtained from eq. (18) are compared with the Z n calculated 
using the Edward eq. (10) in table 1. The new values compare very well with the values 

Table 1 

Average number ol'gauche conformations for n-alkanes 
(T = 298 K) 

n Z n:  ec I . ( 1 8 )  Z n : cq.  ( 1 0 )  

10 2.154 2.138 
20 5.129 5.068 
30 8.105 7.998 
40 11.081 10.928 
50 14.056 14.056 
60 17.032 16.788 
70 20.007 19.718 
80 22.983 22.648 
90 25.959 25.578 

100 28.934 28.508 

given by the linear eq. (10), and this result confirms the linear dependence of  Z n on t7. 

A linear regression of  the eq. (18) Z n data versus n gives 

Z n = 0.368 + 0.298(,7 - 4). (19) 

This equation is strictly linear, correlation coefficient equal to unity,  and exactly 

reproduces the listed eq. (18) values. The newly obtained regression parameters are 
in reasonable agreement with those used in the previous work by Edward and co- 

workers [19] ,  as can be seen by comparison with eq. (10). 
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